Exercise 30

Find the orthogonal trajectories of the family of curves. Use a graphing device to draw several members of each family on a common screen.

$$
y^{2}=k x^{3}
$$

Solution

To find the orthogonal trajectories, we have to solve for $y^{\prime}(x)$, set y_{\perp}^{\prime} equal to the negative reciprocal, and then solve for y_{\perp}. Start by differentiating both sides of the given equation with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =\frac{d}{d x}\left(k x^{3}\right) \\
2 y \frac{d y}{d x} & =3 k x^{2}
\end{aligned}
$$

Divide both sides by $2 y$.

$$
\frac{d y}{d x}=\frac{3 k x^{2}}{2 y}
$$

Solve the original equation for k,

$$
k=\frac{y^{2}}{x^{3}},
$$

and plug the expression into the equation.

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 y} \frac{y^{2}}{x^{3}}=\frac{3 y}{2 x}
$$

Here is where we introduce y_{\perp}.

$$
\frac{d y_{\perp}}{d x}=-\frac{2 x}{3 y_{\perp}}
$$

Since this equation is separable, we can solve for y_{\perp} by bringing all terms with y_{\perp} to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
y_{\perp} d y_{\perp} & =-\frac{2}{3} x d x \\
\int y_{\perp} d y_{\perp} & =\int-\frac{2}{3} x d x \\
\frac{1}{2} y_{\perp}^{2} & =-\frac{1}{3} x^{2}+C
\end{aligned}
$$

Multiply both sides by 2 .

$$
y_{\perp}^{2}=-\frac{2}{3} x^{2}+2 C
$$

Take the square root of both sides and let $A=2 C$.

$$
y_{\perp}(x)= \pm \sqrt{-\frac{2}{3} x^{2}+A}
$$

This is the family of curves orthogonal to $y^{2}=k x^{3}$.

Figure 1: Plot of $y^{2}=k x^{3}$ in blue $(k=0, \pm 5, \pm 10)$ and the orthogonal trajectories y_{\perp} in red ($A=5,10$).

